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Abstract

Introduction: Genome-wide association studies (GWAS) in late onset Alzheimer’s

disease (LOAD) provide lists of individual genetic determinants. However, GWAS do

not capture the synergistic effects among multiple genetic variants and lack good

specificity.

Methods: We applied tree-based machine learning algorithms (MLs) to discriminate

LOAD (>700 individuals) and age-matchedunaffected subjects inUKBiobankwith sin-

gle nucleotide variants (SNVs) fromAlzheimer’s disease (AD) studies, obtaining specific

genomic profiles with the prioritized SNVs.

Results: MLs prioritized a set of SNVs located in genes PVRL2, TOMM40, APOE, and

APOC1, also influencing gene expression and splicing. The genomic profiles in this

region showed interaction patterns involving rs405509 and rs1160985, also present

in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. rs405509 located

in APOE promoter interacts with rs429358 among others, seemingly neutralizing their

predisposing effect.

Discussion: Our approach efficiently discriminates LOAD from controls, capturing

genomic profiles defined by interactions among SNVs in a hot-spot region.
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1 INTRODUCTION

1.1 Background

Alzheimer’s disease (AD) is a neurodegenerative pathology and the

most common cause of late life dementia with symptoms such as

memory loss, language deficits, disorientation, mood changes, and

in advanced stages with loss of vegetative function and eventually

death.1 Approximately 5% of the total number diagnosed with AD

develop symptoms of dementia between the ages 45 and 65, and are

designated as early onset Alzheimer’s disease (EOAD).2 Conversely,

theprevalenceof thedisease in thepopulation agedabove65currently

represent≈95%of the total AD cases, and are designated as late onset

Alzheimer disease (LOAD).3

The genomic characterization of AD has improved in the last

decades thanks to the emergence of genome-wide association stud-

ies (GWAS).4 However, these tools miss the synergistic effects caused

by various genomic loci and lack good specificity due to the multiple

testing problem and linkage disequilibrium (LD).5 In this context, the

selection of genetic determinants for the follow-up in laboratory and

clinical studies remains a challenge, and most of the mechanisms in

which the discovered predisposing and protective genetic alterations

contribute to AD are still unknown.6 In the case of LOAD, heritability

is estimated to be ≈56% to 79%,7 and Apolipoprotein E polymorphic

alleles (APOE ε2/ε3/ε4) are the major genetic determinants of suscep-

tibility discovereduntil now.8,9 Nevertheless, there aremore candidate

genes such as TOMM40, PVRL2, ABCA7, ADAM10, BIN1, CLU, and CR1,

among others,4,10 and nowadays, there is a growing consensus consid-

ering LOAD a polygenic risk disease.11

Machine learning (ML) methods are growing in popularity for their

contributions to awide range of fields includingmedicine.12,13 ML clas-

sifiers have been previously implemented to classify AD using geno-

typing data reaching an accuracy of 0.84.14,15 Additionally, they have

been used in the post-GWAS prioritization of genomic variants in sev-

eral diseases.16,17,18 As ML algorithms work better with a limited set

of predictors to be efficient, and the full set of single nucleotide vari-

ants (SNVs) in genotyping arrays is too large to reach a reasonable com-

putational performance, a set of AD-related SNVs are typically prese-

lected and used as predictors in theMLmodels. As input variables, ML

approaches can accept a list of SNVs without any prior assumptions

about the genetic contribution to the traits and the method itself cal-

culates the importance of the SNVs during the learning step.

In this study, our initial aim was to classify individuals with LOAD

and controls without any neurodegenerative disease both from theUK

Biobank (UKB),19 using ML methods and data from genotyping arrays.

Our second aim was to select the SNVs with higher feature impor-

tance (FI) and retrieve a set of genomic profiles that are related to

AD.We did a first selection of genomic variants considering previously

reported SNVs related to AD in the DisGeNet20 database. DisGeNet

integrates data from curated resources such as ClinVar,21 the GWAS

Catalog,22 and GWASdb.23 As for the classification method, we tested

three tree-basedML approaches, gradient boosted decision trees (GB),

extremely randomized trees (ET), and random forest (RF). Tree-based

RESEARCH INCONTEXT

1. Systematic review: We used a set of single nucleotide

variants (SNVs) related to Alzheimer’s disease (AD) and

machine learning (ML) approaches to classify people

with late onset Alzheimer’s disease (LOAD) and controls

from the UK Biobank (UKB), reaching an area under the

receiver operating characteristic curve (AUC-ROC) from

0.80 to 0.90. The correctly classified genomic profiles

built with the prioritized SNVs inMLwere interpreted.

2. Interpretation: The genomic profiles obtained with UKB

samples showed interaction patterns involving two SNVs,

rs405509 and rs1160985, that were also present in

the Azheimer’s Disease Neuroimaging Initiative dataset

(ADNI). ML approaches revealed an interaction between

rs405509 located in apolipoprotein E promoter and the

upstream SNVs rs429358, rs769449, and rs4420638

seemingly neutralizing their predisposing effect to the

disease. These interactions in a hot-spot region of chro-

mosome 19 are supported by the presence of expression

and splicing quantitative trait locis.

3. Future directions: We propose our approach to: (a) clas-

sify individuals with LOAD; (b) provide genomic pro-

files linked to the disease, revealing synergistic effects

between SNVs located in close proximity.

algorithms perform yes/no decisions in branches leading to a sample’s

classification, which is particularly appropriatewith categorical predic-

tors such as SNVs. Here we show the utility of tree-basedMLmethods

to classify LOAD, to prioritize a small set of SNVs related to the disease,

and to draw distinct LOAD genomic profiles based on the interactions

between these SNVs.

2 METHODS

2.1 Sample selection and clinical information in
UK Biobank and Alzheimer’s Disease Neuroimaging
Initiative

From UKB,19 a total number of 738 participants with AD and >70

years old, were selected using the International Classification of Dis-

ease, 10th revision (ICD-10) codes representative of AD, excluding

the EOAD ICD-10 codes from the available hospitalization records

(Table S1 in supporting information, page 1). In addition, 75,000 par-

ticipants were selected as controls >70 years old and without any

reported mental and behavioral disorder (ICD-10: F00–F99) or dis-

ease of the nervous system (ICD-10: G00–G99) in hospitalization

records. Participants that requested to withdraw from UKB were

excluded. Gender and age distribution of selected samples across
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conditions is shown in Figure S1A, B in supporting information. There

were 327 samples in Alzheimer’s Disease Neuroimaging Initiative 3

(ADNI3).24 Using reports of individuals with ages 70 to 85 years old to

match the same age distribution as in UKB, and the fields listed in Table

S1, page2, to categorizeADand controls, 13ADand126 controlswere

selected.

2.2 Preprocessing and selection of genomic
variants

Genome-wide genotyping data from “Affymetrix UK BiLEVE Axiom

array” and “Affymetrix UK Biobank Axiom array” available for the

500,000 participants in the UKB cohort was used as the source of

genomic data. In the case of ADNI, from the three available GWAS

datasetsADNI3was selectedbecausebyusing Illumina InfiniumGlobal

Screening Arrays was the only onewith a specific marker for rs429358

in PLINK files. Bed, bim, and fam files were used to extract individual-

ized genotyping data. Regarding quality assessment, genomic variants

with minor allele frequency (MAF) ≤0.01% and Hardy-Weinberg equi-

librium (HWE) P-value <10E-4 were filtered out. Monomorphic mark-

ers (SNVs with the same genotype in all subjects) were also excluded.

The list of SNVs to be used as predictors was obtained from the

“curated variant disease associations” dataset in DisGeNet,20 filtering

for the AD categories described in Table S1, page 3. A total number of

145 SNVs reported to be related to AD and passing the quality filters

mentioned above were selected as AD predictors in UKB to be used

in the ML models. The annotated list of AD-related predictors is pro-

vided in Table S2 in supporting information and the distribution over

chromosomes and genomic regions is shown in Figure S1C, D. Among

the AD predictors, 14 SNVs that were prioritized in at least one of

the three ML models with UKB and were common in UKB and ADNI3

arrayswere selected inADNI for comparisonpurposes. After the selec-

tion of the variants, numeric matrices were built with rows represent-

ing samples and columns representing SNVs.We used the dbSNP ID as

unique identifier for SNVs. In the matrix, SNVs were categorized as 1,

2, or 3 corresponding to the three possible genotypes, minor allele of

the SNV absent, present in one allele, or present in both alleles, respec-

tively. Missing values were categorized with 0. A quality control based

on allele frequency (AF) was applied to discard the presence of major

technical artifacts (Table S3 in supporting information).

2.3 ML models: building and evaluation

Python 3.7.6 with Scikit-learn v0.22.1 module was used to build the

ML models on the UKB pre-processed matrix described in the section

“Pre-processing and selection of genomic variants.” A train/test split

was applied to have 80%of samples for training and 20%of samples for

testing. Samples were balanced to have the same proportion of LOAD

and controls using random undersampling. Nested cross-validation

(CV) was applied to discard a significative overfitting in models

(Table S4 in supporting information). Hyperparameter selection was

performed on the training set through a 10-fold CV. Two metrics such

as area under the receiver operating characteristic curve (AUC-ROC)

and f-score were considered for determining the best hyperparameter

configuration for each model. The median of AUC-ROC (Figure S2A, B,

C in supporting information) and f-score (Figure S2D, E, F) was> 0.7 in

validation sets of models with AD predictors. The final model with the

optimized parameters was trained on the original train set (80%) and

tested on the test set (20% of samples). The selected parameters are

listed in Table S1, page 4.

2.4 Statistical test for interactions between pairs
of SNVs

For all the possible pairwise combinations of 14 SNVs, R (v4.0.4) was

used to build full generalized linearmodels (glm) considering two SNVs

as independent variables with their individual effect and interaction

to classify LOAD and controls, and a reduced glm with the same vari-

ables but considering only the individual effect of each SNV without

the interaction termto classify both classes. Themodelswerebuiltwith

samples that did not have anymissing value in any of the 14 SNVs, con-

sisting in a total number of 616 LOAD and 61,987 controls in UKB, and

12 LOAD and 116 controls in ADNI. The function anova.glm in stats

package was used to perform the analysis of deviance between the full

glm and reduced glm, comparing the reduction in deviance with a Chi-

squared test. In UKB, for each combination of variants the test was

applied 1000 times, randomly selecting 500 AD and 500 controls in

each iteration to have balanced groups. One hundred iterations sub-

sampling 10 AD and 10 controls were applied in ADNI3. The asymp-

totically exact harmonic mean P-value (HMP) was used to summarize

the P-values obtained across the iterations and to correct for multiple

comparisons.

3 RESULTS

3.1 Evaluation metrics across different ML
models

We tested the ability of GB, ET, and RF final models with the AD pre-

dictors to classify LOAD and controls. The evaluation was made with

seven different metrics shown in Table 1. The best scores in all evalu-

ation metrics were obtained using GB with an accuracy, f-score, sen-

sitivity, specificity, positive predictive value (PPV), and negative pre-

dictive value (NPV) of 0.80, and an AUC-ROC of 0.91. RF performed

slightly better than ET in accuracy (0.74), f-score (0.74), sensitivity

(0.73), specificity (0.75), PPV (0.75), andNPV (0.73), but AUC-ROCwas

better in ET (0.82) (Figure S3A in supporting information). In agree-

ment with literature,25 ML models using the APOE ε2 and APOE ε4
SNVs had a good predictive power, but performances significatively

improved when using the set of 145 SNVs (median AUC-ROC of 0.68

against>0.80, Figure S4 in supporting information).

 23528729, 2022, 1, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/dad2.12300 by U

niversity O
f C

alifornia, San, W
iley O

nline L
ibrary on [07/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 of 10 ARNAL SEGURA ET AL.

TABLE 1 Summary of the evaluationmetrics obtained with GB, ET, and RFmodels and Alzheimer’s Disease predictors

Accuracy AUC-ROC F score Sensitivity Specificity PPV NPV

GB 0.801 0.912 0.800 0.797 0.804 0.803 0.799

ET 0.707 0.820 0.706 0.703 0.710 0.708 0.705

RF 0.739 0.804 0.735 0.725 0.754 0.746 0.732

Abbreviations: GB, gradient boosted decision trees; ET, extremely randomized trees; RF, random forest; AUC-ROC, area under the receiver operating char-

acteristic curve; PPV, positive predictive value; NPV, negative predictive value.

Note:Machine learningmodels with best scores in each evaluationmetric are highlighted in red.

TABLE 2 Characteristics of the six SNVs prioritized by the threemachine learningmethods

SNV Gene Region Chr

hg19

position AFAD AFCntrl

LOG2 FCAF

AD/Cntrl FI RF FI ET FI GB

Fisher

P-value

rs429358 APOE Exonic 19 45411941 0.403 0.156 1.373 0.047 0.041 0.066 3.72E-44

rs769449 APOE Intronic 19 45410002 0.320 0.127 1.329 0.040 0.043 0.119 9.95E-37

rs4420638 APOC1 Downstream 19 45422946 0.417 0.189 1.144 0.051 0.050 0.045 4.56E-42

rs405509 APOE Upstream 19 45408836 0.411 0.470 –0.194 0.130 0.152 0.139 1.40E-03

rs1160985 TOMM40 Intronic 19 45403412 0.322 0.458 –0.507 0.013 0.026 0.167 5.04E-14

rs7412 APOE Exonic 19 45412079 0.033 0.087 –1.385 0.014 0.015 0.024 5.14E-09

Notes: dbSNP ID together with gene annotations are provided in the columns “SNV,” “Gene”, “Region”, “Chr” and “hg19 position”. AF in AD and in controls

are used to calculate the log2FC in AD vs. Cntrl (column “LOG FC AF AD/Cntrl”). SNVs are ordered from the highest logFC (top) to the lowest (bottom) and

colored in blue and red accordingly. FI obtained in RF, ET, and GB are in columns “FI RF”, “FI ET” and “FI GB” respectively. Fisher test P-values measuring the

significance of AF differences between AD and controls are provided in the “Fisher P-value” column.

Abbreviations: AD, Alzheimer’s disease; SNV, single nucleotide variants; AF, allele frequencies; APOE, apolipoprotein E; FI, feature importance; RF, random

forest; ET, extremely randomized trees; GB, gradient boosted decision trees.

3.2 Prioritization of SNVs using FI

To identify the SNVs that provide the strongest signal for the classifi-

cation, we ranked the AD predictors based on the impurity-based FI.

For eachMLmethod, a FI higher than 0.01was used to select the SNVs

among the 145 in AD predictors considered relevant during the classi-

fication (Figure S3B to D). A set of 9, 20, and 15 SNVs were selected

in GB, ET, and RF models, respectively (Table S5 in supporting infor-

mation). We named the SNVs using their dbSNP ID and referring to

the presence or absence of the minor allele. Overall, all the prioritized

SNVs except one, rs7561528, prioritized by RF in chromosome 2, were

located in a region of chromosome 19 comprising PVRL2, TOMM40,

APOE, and APOC1 genes (Figure 1A). The intersection of the priori-

tized SNVs across the threeMLmethods is shown in Figure 1B. The six

SNVsprioritizedby the threeMLmodelswere: rs1160985 inTOMM40;

rs405509, rs7412, rs769449, and rs429358 in APOE; and rs4420638

downstream APOC1 (Table 2).

We used the Fisher-test P-value to measure the differences in AF

between LOAD and controls and then check if the SNVs with higher

FI were also the ones with higher AF differences. Among all AD pre-

dictors, the highest AF differences were in a set of SNVs located in

chromosome 19 (Figure 1C), in a hot-spot region comprising PVRL2,

TOMM40, APOE, and APOC1 genes, the same region where the pri-

oritized SNVs using FI were located (Figure 1A). Looking at the AF

of SNVs prioritized by the three methods in Table 2, SNVs more fre-

quent in LOADwith respect to controls were rs429358 (pval= 3.72E-

44 logFC = 1.37), rs769449 (pval = 9.95E-37 logFC = 1.33), and

rs4420638 (pval= 4.56E-42 logFC= 1.14). Conversely, the SNVsmore

frequent in controls were rs7412 (pval = 5.14E-09 logFC = –1.39),

rs1160985 (pval = 5.04E-14 logFC = –0.51), and rs405509 (pval =

1.40E-03 logFC = –0.19). rs429358 had the highest AF difference

between conditions (Figure 1C), being 2.6 times more frequent in

LOAD with respect to controls (logFC = 1.37). Yet, rs429358 was not

theSNVwith thehighest FI in anyof theMLmethods (Table2, Table S5).

Alternatively, rs405509 reached the highest FI in RF (0.13) and ET

(0.15) and the secondhighest inGB (0.14), but had the lowestAFdiffer-

ences between LOAD and controls compared to the other prioritized

SNVs (logFC = –0.19; Figure 1C, Table 2). rs1160985 had the highest

FI in GB (0.17) but relatively low differences in AF between LOAD and

controls (logFC = –0.507) compared to the other SNVs. We hypothe-

sized the importance of rs405509 and rs1160985 in the ML classifi-

cation is probably due to the co-occurrence or mutual exclusion with

other variants that together form certain genomic profiles, rather than

for beingmore present in one condition with respect to the other.

3.3 Interactions in the hot-spot region of
chromosome 19

To identify possible interactions occurring between the sets of priori-

tized SNVs, we analyzed the genomic profiles whose samples in UKB

were correctly classified as true positives (TP) or true negatives (TN)
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rs405509

rs769449
rs4420638

rs429358

rs1160985
rs7412

(B)

*

Three methods

Two methods

One method

(C)

(A) chr19 (q13.32) 19p13.3 19p13.2 p13.11 19p12 p11 q11 19q12 13.11 13.12 19q13.2 13.32 q13.33 13.42 13.43

APOE

UCSC genes (RefSeq, GeneBank, CCDS, Rfam, tRNAs & Comparative Genomics)

RF prioritized SNVs

ET prioritized SNVs

GB prioritized SNVs

F IGURE 1 A, The genomic location of single nucleotide variants (SNVs) selected using a feature importance (FI)>0.01 in the chromosome 19
hot-spot region. SNVs prioritized by different machine learning (ML) methods are illustrated in different tracks. B, Venn diagram showing the
intersection of the prioritized SNVs by gradient boosted decision trees (GB), extremely randomized trees (ET), and random forest (RF). The name
of the SNVs in the intersection with the threemethods is provided. C, For the 145 SNVs in Alzheimer’s disease (AD) predictors, distribution of the
Fisher-test P-values obtainedmeasuring differences in allele frequency (AF) between late onset Alzheimer’s disease (LOAD) and controls over the
chromosomes. The name of the SNVs prioritized by any of the threeMLmethods is provided and a color is assigned depending on the number of
times a SNVwas selected by any one of themethods. The six SNVs prioritized by GB, ET, and RF are colored in red

in GB, ET, and RF (Figure 2, Figure S5 in supporting information, and

Figure S6 in supporting information, respectively).Most of thepatterns

described hereafter are observed in genomic profiles captured by the

threeMLmethods.However, for simplicitywediscuss the genomic pro-

files definedbyGBonly (Figure2). This decision is supportedby the fact

that GBwas themodel with the best performance in the classification.

Most TP profiles were characterized as having the three SNVs,

rs429358, rs4420638, and rs769449 either in one or two alleles

(Figure 2A, C1). These genomic profiles were present in the 27.83%

of LOAD and 1.21% of controls in the full UKB dataset. The genomic

profiles with rs405509 in both alleles co-occurring with rs1160985

were present in 12.62% of LOAD and were not present in controls

(Figure 2A, C3). Interestingly, rs405509 in both alleles and rs1160985

were mutually exclusive in TN (Figure 2B, C1 and C2). Moreover, the

predisposition to AD caused by the presence of rs429358, rs4420638,

and rs769449 in one allele was neutralized with the presence of

rs405509 in both alleles in a group of TN (Figure 2B, C1). Only GB

captured profiles of TP characterizedwith rs405697 and rs157580 co-

occurring either in one or two alleleswithout the presence of the other

seven SNVs in 3.24% of LOAD (Figure 2A, C2).

Altogether, the LOAD genomic profiles captured byMLmodels sug-

gested that an interaction may exist between the SNVs in the chro-

mosome19 hot-spot region. To test the significance of the interactions

with an alternative method, we built generalized linear models (glm)

to classify LOAD and controls with and without the interaction term

using pairwise combinations of SNVs and measured the changes in the

deviance between both models. We evaluated the interactions also

in ADNI to compare the results to an external dataset. We applied

the test on the 14 SNVs prioritized by any of the three ML methods

with UKB that were also present in ADNI3 arrays (Figure 3). In accor-

dance with the patterns in genomic profiles, rs405509 and rs1160985

were enriched in statistically significant pairwise interactions with the
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% in LOAD

% in Controls

TOMM40

APOE

APOC1

SNV absent

SNV one allele

SNV both alleles

Higher AF in AD

Higher AF in Controls

C3              C2                     C1 

*

*
*
*
*
*

6

10

2

4

8

12

0

6

10

2

4

8

12

0

14

*

*

*
*
*
*

C2                             C1 

pval=1.44E-159   pval=1.04E-39       pval=2.69E-168

pval=3.6E-69                   pval=9.97E-52 

(B)

(A)

F IGURE 2 Genomic profiles of correctly classified samples in gradient boosted decision trees (GB) defined with the nine prioritized single
nucleotide variants (SNVs). Genomic profiles with only one sample or havingmissing values were excluded. In (A) genomic profiles of true positives
(TP) represent all samples that were correctly classified as late onset Alzheimer’s disease (LOAD). In (B) genomic profiles of true negatives (TN)
represent all samples that were correctly classified as controls. Dendrograms on the top and the left weremadewithWard-D2method and
Euclidean distances. Clusters of genomic profiles are indicated with numbers in the x-axis. Fisher-test P-values are providedmeasuring the
statistical significance of different representation of Alzheimer’s disease (AD) and controls in clusters of genomic profiles. The% of samples having
each genomic profile in LOAD and controls is indicated in the bar-plots below the heatmaps. SNVs are colored with their corresponding gene loci
and information of the higher allele frequency (AF) in LOAD or controls is provided in the right-side bar. An asterisk points to the six SNVs
commonly prioritized by GB, extremely randomized trees (ET), and random forest (RF).
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F IGURE 3 Representation of the pairwise test of interactions between the 14 single nucleotide variants (SNVs) prioritized by any of the three
machine learning (ML) methods and commonly present in UK Biobank (UKB) and Alzheimer’s Disease Neuroimaging Initiative 3 (ADNI3) arrays.
Further details on the approach used to test the statistical significance of the pairwise interactions are provided in theMethods section “Statistical
test for interactions between pairs of single nucleotide variants (SNVs)”. Details on the asymptotically exact harmonic mean P-values (HMP) for
each pairwise interaction are provided in Table S6. A cut-off HMP<0.01was used to consider an interaction statistically significant. An asterisk
points to the six SNVs commonly prioritized by gradient boosted decision trees (GB), extremely randomized trees (ET), and random forest (RF).
Statistically significant interactions are enrichedwith rs1160985 and rs405509 in both datasets. These two SNVs: (1) had high feature importance
(FI) scores in theMLmodels, (2) had low allele frequency (AF) differences between Alzheimer’s disease (AD) and controls, (3) were involved in
interaction patterns of the genomic profiles obtained withML approaches. In UKB, 16 of the 19 statistically significant pairwise interactions
involved rs1160985 or rs405509 (Fisher test P-value 5.28E-09). In ADNI all the statistically significant pairwise interactions involved one of the
two SNVs (Fisher test P-value 9.42E-08). SNVs are ordered from the top to the bottom and from the left to the right by number of statistically
significant interactions (decreasing). The gray gradient corresponding to the AF showsweak correlation between number of statistically significant
pairwise interactions of SNVs and AF (spearman correlation 0.41 and 0.32 in UKB and ADNI, respectively)

other prioritized SNVs in ADNI and UKB. In UKB 16 of the 19 statisti-

cally significant pairwise interactions involved rs1160985or rs405509

(Fisher P-value 5.28E-09). In ADNI all the statistically significant pair-

wise interactions involved one of the two SNVs (Fisher P-value 9.42E-

08). There were 12 statistically significant interactions with rs405509

and 10 with rs1160985, from which six were common in UKB and

ADNI (Figure 3 and Table S6 in supporting information). The enrich-

ment of interactions in these SNVs cannot be attributed to the high AF.

For example, rs157580 also hadAF>0.39, butwas involved in only one

significant interaction, while rs7412 had AF<0.1 and had three signifi-

cant interactions.

3.4 Expression and splicing quantitative trait loci
in the prioritized SNVs

We examined the effect of the six SNVs commonly prioritized by

the three ML methods on gene expression (expression quantitative

trait loci, eQTL) and splicing (splicing quantitative trait loci, sQTL) on

different tissues in GTEx.26 Regarding gene expression, rs1160985,

rs405509, rs7412 and rs4420638 were eQTLs of APOE in skin tis-

sue and in the case of rs1160985 heart tissue as well (Table S1, page

6). rs429358, rs769449, and rs4420638 were eQTLs of the upstream

gene APOC1 in esophagus, adrenal gland, and skin. Even if there were
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no eQTLs captured in brain tissue for any of the six SNVs, these data

evidence the presence of a transcriptional regulatory hub in the hot-

spot region of chromosome 19 that may be altered by the presence

of alternative alleles in the prioritized SNVs. On the other side, all the

SNVs except for rs7412were sQTLs to TOMM40 in the brain (Table S1,

page 7). In addition, rs405509 and rs429358 were sQTL to APOE in

lung and brain, respectively.

4 DISCUSSION

Using tree-based ML methods and the set of 145 SNVs related to AD

reported in databases, we were able to classify LOAD and controls,

reaching an accuracy of 0.80 and an AUC-ROC of 0.91 in GB. We pri-

oritized a set of 9, 20, and 15 SNVs in GB, ET, and RF, respectively,

fromwhich six SNVswere commonly prioritized across the threemeth-

ods. The six SNVs were located in a chromosome19 hot-spot region

comprising TOMM40, APOE, and APOC1 genes. rs429358 is the most

well-characterized LOAD genetic determinant,27,9 rs7412 is known to

be protective against AD,28 and the two SNVs define the distinct apoE

isoforms.25 rs4420638 is in strong LDwith rs4293588 and for this rea-

son, its linkwithAD is attributed to rs429358. rs769449hasbeenasso-

ciated with low-density lipoprotein cholesterol plasma levels,29 with

lower longevity,30 and with cognitive decline.31 rs1160985 has been

related to increased risk of LOAD in a Chinese population,32,33 but to

be protective against AD in other ethnic cohorts.34,35 Located in the

APOE promoter region, the rs405509 minor allele in both copies has

been described to alter APOE gene expression36,37 and to act as effect

modifier to rs429358 in previous AD studies.38,39,40 Intriguingly, the

SNVs reaching the highest FI, rs405509 and rs1160985, had relatively

lowAF differences between LOADand controls compared to the other

prioritized SNVs. Also, the two most well-characterized LOAD genetic

determinants in the literature to date and the ones with higher AF

differences between both conditions, rs42935827 and rs7412,28 were

not the oneswith the highest FI scores. These results suggest that tree-

based ML methods are capable of prioritizing variants not only based

on the individual enrichment of each SNV in the different classes, but

also considering interactions between groups of SNVs.

Looking at the correctly classified genomic profiles, most of the

TP were characterized to have rs429358, rs4420638, and rs769449

co-occurring in either one or two alleles, without the presence of

rs405509 in two alleles and the absence of rs7412. Contrarily, profiles

with rs429358, rs4420638, and rs769449 in one allele co-occurring

with rs405509 in two alleles were present in TN. In this sense,

rs405509 seems to act as an effect modifier over the three predis-

posing variants. In addition, rs1160985 and rs405509 in both alle-

les were either predisposing to AD when co-occurring in TP, or pro-

tecting against AD when mutually exclusive in TN. Last, rs157580

and rs405697 were present in a small number of LOAD cases, com-

prising a third group of TP in GB. These two SNVs in TOMM40 were

reported in other works to be related with lower longevity in the Chi-

nese population41 and related to AD independently of variants in the

APOE locus in the Japanese population.35 Testing the statistical signif-

icance of the pairwise interactions in the set of 14 SNVs prioritized by

any of the three ML methods, results corroborated what we observed

in the genomic profiles. There was an enrichment of rs405509 and

rs1160985 in the statistically significant interactions inUKB andADNI

datasets.

Using GTEx data we show that the six prioritized SNVs are eQTLs

of APOE or APOC1, but not in brain tissues. Conversely, rs1160985,

rs405509, rs769449, rs4420638are sQTLsofTOMM40, and rs429358

is sQTL of TOMM40 and APOE in brain tissues. In this respect, some

studies previously suggested the existence of a complex transcrip-

tional regulatory hub in the region where the prioritized SNVs are

located.10,42,43 The three predisposing SNVs prioritized by the three

ML methods (rs429358, rs4420638, and rs769449) are in high LD.

Among the three, only rs4420638 was an eQTL to APOE. Seemingly,

only rs429358 was sQTL to APOE, possibly indicating different biolog-

ical mechanisms despite LD. However, with the data we had we could

not demonstrate that the three SNVs were independently associated

with AD. Other studies indicated that MLmethods are robust in terms

of performance when dealing with SNVs in LD.44,45,46

As in other works,16 we found that tree-based ML methods can

add an important layer of information to the disease-related variants

obtained with other population genomic approaches such as GWAS.

We proved that ML methods are efficient at classifying the major

genetic profiles defined by a set of interactions between SNVs. The val-

idation of these genomic profiles could improve the clinical character-

ization of patients in the future. Nevertheless, the possibility of using

individualized genomic information to stratify the population with the

risk of developing a certain disease, especially if a cure is not yet avail-

able, is always controversial. With the balance of benefits and costs in

mind, genetic tests could further the health-care system implementing

preventivemeasures in a healthypopulationwith the risk of developing

AD. Yet, an adequate regulation should be applied, considering topics

such as personal data protection, privacy, and informed consent.47
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